Survey of super-resolution advances including diffusion and transformers

Survey of super-resolution advances including diffusion and transformers

Hitchhiker’s Guide to Super-Resolution: Introduction and Recent Advances
arXiv paper abstract https://arxiv.org/abs/2209.13131v1
arXiv PDF paper https://arxiv.org/pdf/2209.13131v1.pdf

With the advent of Deep Learning (DL), Super-Resolution (SR) has also become a thriving research area.

However, despite promising results, the field still faces challenges that require further research e.g., allowing flexible upsampling, more effective loss functions, and better evaluation metrics.

… review the domain of SR in light of recent advances, and examine state-of-the-art models such as diffusion (DDPM) and transformer-based SR models.

… present a critical discussion on contemporary strategies used in SR, and identify promising yet unexplored research directions.

… complement previous surveys by incorporating the latest developments in the field such as uncertainty-driven losses, wavelet networks, neural architecture search, novel normalization methods, and the latests evaluation techniques.

… also include several visualizations for the models and methods throughout each chapter in order to facilitate a global understanding of the trends in the field …

Stay up to date. Subscribe to my posts https://morrislee1234.wixsite.com/website/contact
Web site with my other posts by category https://morrislee1234.wixsite.com/website

LinkedIn https://www.linkedin.com/in/morris-lee-47877b7b

Photo by Alexander Schimmeck on Unsplash

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
AI News Clips by Morris Lee: News to help your R&D

I apply innovative technologies like machine learning, computer vision, and physics to further an organization's goals. Am recognized innovator with 66 patents.